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Abstract
We construct the fusion ring of a quasi-rational ŝl(4)k WZNW theory at generic
k �∈ Q level. It is generated by commutative elements in the group ring Z[W̃ ]
of the extended affine Weyl group W̃ , which extend polynomially the formal
characters of finite-dimensional representations of sl(4).

PACS numbers: 02.10.Hh, 02.20.Tw, 11.25.Hf

1. Introduction

The WZNW models at generic (non-rational) level provide examples of quasi-rational
conformal field theories. These are theories described by an infinite discrete spectrum of
representations of the chiral algebra, here g = ŝl(n)k , and a fusion rule producing a finite
number of terms. The study of these quasi-rational fusion rings is motivated by the fact that
they determine, upon ‘quantization’, the fusion rules of the corresponding rational conformal
field theories, described by the fractional level admissible representations of g [1]. For the latter
there is no sensible Verlinde formula at hand, see the two fully worked out ŝl(n)k examples
so far, n = 2 [2–4] and n = 3 [5–7]4. The quasi-rational fusion rings and their characters
are also important as part of the data of more general conformal field theories (CFT) with
a continuum spectrum, on manifolds with or without boundaries; see, for example, [9] and
references therein for the simplest example of generic level ŝl(2)k theory.

Consider the ‘pre-admissible’ set of representations labelled by the highest weights

{� = ȳ · (λ′ − λ(k + n)), k �∈ Q| ȳ ∈ W, λ′, λ ∈ P+, s.t., 〈λ, αi〉δ + ȳ(αi) ∈ �re
+ ,

i = 1, 2, . . . , n − 1} (1.1)

4 A different approach to the problem of ŝl(2)k fractional level fusion rules, based on novel indecomposable
representations, has been recently proposed in [8] and illustrated on the example k + 2 = 2/3.
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where ȳ · λ = ȳ(λ + ρ) − ρ is the shifted action of the Weyl group W of the horizontal
algebra g = sl(n), P+ = ⊕iZ�0�i is the chamber of integral dominant weights, �i denote
the fundamental weights of g and �re

+ is the set of real positive roots of g. The ‘pre-integrable’
subset (ȳ = 1, λ = 0, �̄ = λ′ ∈ P+) has a fusion ring coinciding with the representation
ring of the finite-dimensional irreducible representations (irreps) of g. Its structure constants
are given by the classical Weyl–Steinberg formula, which can be ‘quantized’ to recover the
fusion rule multiplicities of the integer level integrable representations [10–12]. The main
ingredient in both the classical and the ‘quantized’ versions of this formula is the multiplicity
of states of finite-dimensional irreps of g, encoded in their formal characters. However, all
these classical data have no direct meaning for the second, labelled by non-integer highest
weights of g, subseries of (1.1) (λ′ = 0), we shall deal with in what follows.

Remarkably, in the simplest ŝl(2)k case the fusion characters for the subseries λ′ = 0 turn
out to be given by the formal characters of finite-dimensional irreps of the super-algebra
osp(2|1). Accordingly the quasi-rational fusion ring of the ŝl(2)k representations (1.1)
coincides with a product of the representation rings of osp(2|1) and sl(2). Their quantized
rational counterpart inherits this ‘hidden’ Z2—graded structure, first noticed in [4]. The group
Z2 is the Weyl group W of sl(2) and the next truly nontrivial case n = 3 also exhibits a
W -graded algebraic structure. The specific character formulae established for n = 3 do not
extend, however, to n � 4, which is why it is important to study the simplest next case n = 4
by methods admitting, in principle, a generalization to arbitrary n.

Preliminary results of this work were announced in [13] and to make the paper self-
contained in the next section we repeat some of the introductory material. Our main new result
is the explicit formula in section 3 for the characters shown to generate a consistent fusion
ring.

2. General setting

Consider the subset W̃ (+) of the extended affine Weyl group W̃ = W � tP = W � A

W̃ (+) := {y ∈ W̃ |y(αi) ∈ �re
+ for ∀i = 1, . . . , n − 1}. (2.1)

Here tP is the subgroup of translations in the weight lattice P of g = sl(n), and A is the cyclic
subgroup of W̃ generated by γ = t�1

w1w2 · · · wn−1, which keeps invariant the set of simple
roots � = {α0, α1, . . . , αn−1} of g. Accordingly, the set W̃ (+) is invariant under the left action
of A and is represented as the union ∪a∈AaW (+), where W (+) := W̃ (+) ∩ W .

Let k �∈ Q. The subset W̃ (+) is a fundamental domain in W̃ with respect to the right
action of W [6]. The set of weights � = W̃ (+) · k�0 (corresponding to the subset λ′ = 0
of (1.1), y = ȳt−λ) or, equivalently, the subset W̃ (+) ⊂ W̃ itself, labels the highest weights
of the maximally reducible Verma modules of g. Indeed for � = y · k�0 and β = y(α) s.t.
y ∈ W̃ (+), the Kac–Kazhdan singular vector criterion holds true for any positive root α of
g. Here �0 is the fundamental weight of g dual to the affine root α0 and the Kac–Kazhdan
reflections are identified with the right action of W on W̃ , i.e. wy(α) · � = ywα · k�0.

The factorization of the submodules generated by these singular vectors imposes
restrictions on the possible three-point couplings which determine the fusion rules in the CFT.
In particular, the decoupling of the singular vectors in the Verma modules of highest weights,
labelled by the elements a ∈ A, implies that these elements play the role of ‘simple currents’
of the fusion ring, with fusion consistent with their left action in W̃ (+), y → ay. However,
completely solving the null vector decoupling equations is a difficult problem (see also the
Discussion in what follows). Instead we shall recursively construct a fusion ring building on
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and extending the approach given in [6]. The idea there is to generalize the formal characters
of finite-dimensional irreps of g,

χλ =
∑
µ∈�λ

mλ
µt−µ ∈ Z[tP ], χw·λ = det(w)χλ, w ∈ W, λ ∈ P+, (2.2)

which are elements in the group ring Z[tP ]. In analogy one can associate with any y ∈ W̃ (+)

a formal ‘character’, an element of the group ring Z[W̃ ] of W̃

χy =
∑

z∈W̃ ,zy−1∈W

my
z z, y ∈ W̃ (+), (2.3)

extended to W̃ by

χyw := det(w)χy, y ∈ W̃ (+), w ∈ W. (2.4)

In (2.3) m
y
z are integer non-negative multiplicities, yet to be determined. In particular, for

a ∈ A we define χa = a, and the simple current fusion

χaχx = χax (2.5)

implies that m
ay
az = m

y
z . Clearly we can restrict in (2.3) to elements y in W (+), for which the

sum in (2.3) is required to run over z ∈ W , of length not exceeding the length of the ‘highest
weight’ y.

The finite set Gy = {z ∈ W̃ |my
z �= 0} generalizes the weight diagram �λ in (2.2). With a

notion of a generalized weight diagram, consider a formula for the fusion rule multiplicities,
generalizing the classical Weyl–Steinberg formula for χλ

χxχy =
∑
z∈Gx

mx
zχzy =

∑
z∈W̃(+)

Nz
x,yχz, (2.6)

Nz
x,y =

∑
w∈W

det(w)mx
zwy−1 . (2.7)

The second equality in (2.6) with the multiplicities given in (2.7) is derived as for the usual
sl(n) characters, using the symmetry in (2.4) and the fact that W̃ (+) is a fundamental domain
in W̃ .

Introduce a map ι of W̃ into the root lattice Q of g [5, 6]

ι : W̃ � y = ȳt−λ → nλ + ȳ−1 · 0 ∈ Q. (2.8)

It has the properties

ι(xy) = y−1(ι(x)) + ι(y),

ι(yw) = w−1 · ι(y), w ∈ W,

ι(ax) = ι(x), a ∈ A,

(2.9)

and the set W̃ (+) is expressed alternatively as W̃ (+) = {y ∈ W̃ |ι(y) ∈ P+}.
In the n = 3 case the coefficients m

y
z in (2.3) are given as

my
z = m

ι(y)

ι(z) , (2.10)

m
ι(y)

ι(z) being as in (2.2) the multiplicity of the weight µ = ι(z) of the representation of sl(3) of
highest weight λ = ι(y). Similarly, the fusion coefficients (2.7) are expressed in terms of the

structure constants N
ι(z)

ι(x)ι(y) of the sl(3) character ring

Nz
x,y = N

ι(z)

ι(x)ι(y). (2.11)

The generalized weight diagrams Gy are determined by (2.10) and thus have the structure of
the weight diagrams �ι(y) of triality zero sl(3) representations, with multiplicities preserved,
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but with the weights µ �∈ Im(ι) excluded. The same type of formulae hold in the simpler sl(2)

case where |Gy | = |�ι(y)|.
However, as discussed in [13], the definition of the generalized weight diagram based

on (2.10), and hence (2.11), has to be modified in the higher rank cases, since it is not generally
consistent with the Weyl–Steinberg formula (2.6). The multiplicities in (2.3) are only restricted
by the inequality m

y
z � m

ι(y)

ι(z) .

3. Fusion character ring

We denote by W the character ring of finite-dimensional irreps of sl(n) generated by the formal
classical characters χλ (2.2). They commute with any w ∈ W̃ because of the invariance of the
classical weight multiplicities mλ

w(µ) = mλ
µ, w ∈ W .

Let x = t−νx ∈ W̃ (+). Guided by the n = 2, 3 examples we first introduce the
following combinations of classical sl(n) characters χλ times powers of the generator γ of A,
parametrized by weights b ∈ Q:

χ(b)
x = det(x)

n−1∑
i=0

γ iχν−γ i (�n−i+b)+γ i ·0, (3.1)

where �n := 0. These elements of the group ring W[A] are covariant under A:

χ(b)
ax = aχ(b)

x , ∀a ∈ A. (3.2)

We recall the expressions for the generalized characters for the n = 2, 3 cases for which
W̃ (+) = At−P+ and W̃ (+) = At−P+ ∪ Aw0t−P+ respectively [6]

χx = χ(0)
x = det(x)(χν + γχν− α

2
), n = 2,

χx = χ(0)
x + χw0χ

(θ)
x , χw0 = 2 + w0 + w1 + w2, n = 3.

(3.3)

The square of the A-invariant combination F := w0 +w1 +w2 = aFa−1 in (3.3) lies in W[A].
We now turn to the sl(4) case. The fundamental chamber W̃ (+) is alternatively represented

as W̃ (+) ≡ U t−P+ , where

U = {A, Aw0, Aw10, Aw30, Aw310, Aw2310} (3.4)

is a subset of W̃ ; its projection U onto the subgroup W gives the right cosets of Ā. The group
A defines an automorphism of W , wα → γwαγ −1 = wγ(α), α ∈ �, with γ (αj ) = αj+1 for
j = 0, 1, 2, . . . , n − 1, identifying αn ≡ α0. Using this we define A-invariants in the group
algebra of W , Fy = Faya−1 = aFya

−1, ∀a ∈ A,

Frst... ≡ Fwrst...
:= 1

lwrst...

∑
a∈A

awrst...a
−1, wrst... ∈ W, (3.5)

where lw takes the value 1 or 2 if the sum over A contains four or two different terms,
respectively; e.g., F0 = w0 +w1 +w2 +w3, F13 = w13 +w02 = F20. As it is clear from (2.9), the
terms in a given Fy have their ι images in an orbit of the cyclic subgroup Ā of W . In general,
FxFy �= FyFx , but for example, the three elements Y0 := F0, Y30 := F30+F13, Y10 := F10+F13,
commute between themselves.

We now introduce a finite set of formal characters χy, y ∈ W (+), as in (2.3), for all of
which we will adopt the definition (2.10). In employing the map (2.8) and comparing with
the standard sl(4) weight diagrams one can use the recursive formula for the multiplicity of a
weight µ (see, e.g. [14])

mµ = −
∑

w∈W ;w �=1

det(w)mµ+ρ−w(ρ), (3.6)
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with the weights on the RHS being strictly greater than µ. Using (3.6) we have for y ∈ W (+)

and of length l(y) � 3

χw0 = 3 + F0 ≡ 3 + Y0, ι(w0) = (1, 0, 1),

χw10 = 3 + 2F0 + F13 + F10 ≡ 3 + 2Y0 + Y10, ι(w10) = (0, 1, 2),

χw30 = 3 + 2F0 + F13 + F30 ≡ 3 + 2Y0 + Y30, ι(w30) = (2, 1, 0),

χw130 = 7 + 5F0 + 4F13 + 2F30 + 2F10 + (F121 + F130 + F213)

=: 7 + 5Y0 + 2Y10 + 2Y30 + Y130, ι(w130) = (1, 2, 1),

χw230 = 1 + F0 + F13 + F30 + F230 ≡ 1 + Y0 + Y30 + γχ�1
, ι(w230) = (4, 0, 0),

χw210 = 1 + F0 + F13 + F10 + F210 ≡ 1 + Y0 + Y10 + γ 3χ�3
, ι(w210) = (0, 0, 4),

(3.7)

of dimension 7, 17, 17, 63, 15, 15, respectively (here (a1, a2, a3) = ∑
i ai�̄i). Being linear

combinations of A-invariant elements they commute with any a ∈ A. To each of these
characters we associate a weight diagram which can be identified with a finite subset of the
Cayley graph of W (see [13] for a schematic drawing of the latter). In agreement with (2.7)
by a direct computation one obtains

χw0χw0 = 1 + 2χw0 + χw10 + χw30

χw0χw10 = χw0 + 2χw10 + χw130 + χw210

χw0χw30 = χw0 + 2χw30 + χw130 + χw230 ,

(3.8)

which serve as algebraic relations restricting the set of characters

F = {χw0 , χw10 , χw30 , χw210 , χw230}. (3.9)

Further fusions recover the characters of length 4, in particular the character χw2130 of dim 177,
with ι(w2130) = (2, 2, 2),

χw2130 = χw10χw30 − (1 + 2χw0 + χw10 + χw30 + χw130)

= 11 + 9F0 + 8F13 + 4F10 + 4F30 + 3F121 + 3F130 + 3F213 + 2F230 + 2F210

+ (F10 + F30 + F1213 + F1232 + F1321 + F2321 + F0213 + F2130)

=: 11 + 9Y0 + 4Y1 + 4Y3 + 3Y130 + 2γχ�1
+ 2γ 3χ�3

+ Y2130. (3.10)

This is the simplest example in which formula (2.10) fails. The expression obtained by fusion
corresponds to a weight diagram that is a subset of the one determined by (2.10) and (3.6). It
can be summarized by the following rules:

(i) delete all elements longer than the highest weight element;
(ii) decrease the multiplicity of wijk..., determined from (2.10), by the complement to four of

the number of different elementary reflections appearing in wijk....

Example: for w2321 the multiplicity (2.10) is decreased by 1 since three of the four reflections
appear, while for w0213 it is left unchanged; the multiplicity of the identity is decreased by 4.

One obtains, by direct computation, the relations

Y 2
0 = 4 + Y10 + Y30

Y 2
10 = 2 + 3Y30 − Y10 + Y0γ

3χ�̄3
+ γ 2χ�̄2

Y 2
30 = 2 + 3Y10 − Y30 + Y0γχ�̄1

+ γ 2χ�̄2

Y0Y10 = 2Y0 + Y130 + γ 3χ�̄3

Y0Y30 = 2Y0 + Y130 + γχ�̄1

Y10Y30 = 6 + Y2130,

(3.11)
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which imply that all five elements Y0, Y10, Y30, Y130, Y2130 commute. Because of the first three
equalities the product of any two of these elements is expressed as a linear combination of
the same elements plus the identity, with coefficients in the ring W[A]. Alternatively, the
relations (3.11) can be rewritten as

Y10 + Y30 = Y 2
0 − 4 =: P2(Y0)

2Y130 = Y 3
0 − 8Y0 − (γ 3χ�̄3

+ γχ�̄1
) =: P3(Y0)

2Y2130 = Y 4
0 − 10Y 2

0 − Y0(γ
3χ�̄3

+ γχ�̄1
) + 8 − 2γ 2χ�̄2

=: P4(Y0)

(Y10 − Y30)(γ
3χ�̄3

− γχ�̄1
) = −Y 5

0 + 12Y 3
0 + 2Y 2

0 (γ 3χ�̄3
+ γχ�̄1

)

+ 4Y0(γ
2χ�̄2

− 6) =: P5(Y0),

(3.12)

where Pk(Y0) are k-order polynomials of Y0, and furthermore, Y0 satisfies a sixth-order
polynomial equation,

Y 6
0 − 12Y 4

0 − 2cY 3
0 − 4Y 2

0 (γ 2χ�̄2
− 6) + c2 − 4(1 + χθ) = 0 (3.13)

where c = γ 3χ�̄3
+ γχ�̄1

. The relations (3.11) suggest that the formal characters
we look for are given as linear combinations of the six elements Yg, g ∈ U1 :=
{1, w0, w10, w30, w130, w2130} ⊂ U , with coefficients in the ring W[A]. We define

χx :=
∑
g∈U1

χg

∑
b

cg,bχ
(b)
x = (χ(0)

x − χ(θ+α2)
x ) + χ0(χ

(2θ)
x + χ(θ)

x )

+ χ10χ
(2θ−α1)
x + χ30χ

(2θ−α3)
x + χ130χ

(θ+α2)
x + χ2130χ

(θ)
x . (3.14)

Choosing x = g for g ∈ U1 (3.14) reproduces the formulae for the characters in (3.7), (3.10).
The values of the shifts b are recovered from each of these five basic characters demanding
that the first classical character of the quadruplet (3.1) is an identity. This gives bg = 0 for the
identity g = 1, while bg = −ḡ · (−θ) for g = ḡt−θ , i.e. bg = 2θ, 2θ − α1, 2θ − α3, θ + α2, θ ,
respectively. In these checks one has to repeatedly use the symmetry (2.2) of the classical
characters to cancel abundant terms. The proposed expression (3.14) is justified by the
following lemma.

Lemma 1. The following Pieri-type formulae hold true for the characters defined in (3.14)
and any f ∈ F:

χf χx =
∑
w∈Gf

χwx. (3.15)

The first two relations are proved by a direct but tedious computation comparing the products
in the LHS with the RHS of (3.15). It is based on the polynomial relations (3.11) satisfied by
the invariants Yg . One also has to use the classical characters multiplication tables of the
fundamental characters χ�̄i

, i = 1, 2, 3 and χθ , which extend to the multiplication rules

χλχx =
∑
µ∈�λ

χt−µx. (3.16)

The third relation is recovered from the second by the symmetry w1 ↔ w3. The proof for the
last two characters χw230 , χw210 uses the fact that they are expressed in terms of the first three
characters in (3.9) (cf (3.7)) and the fundamental classical characters χ�̄i

, i = 1, 2.

Formulae (3.15) and (3.14) hold for generic x, sufficiently far from the walls of the chamber
W̃ (+), otherwise cancellations occur, as for example, in the examples (3.8). Having the explicit
formula (3.14) one can compute the multiplicities in (2.3). Furthermore, we recall that the
following proposition was proved in [13] under the assumption that (3.15) holds true:

Proposition 1. For any y ∈ W (+) there is a formal character χy obtained recursively,
using (3.15), as a polynomial of the commuting ‘fundamental’ characters in (3.9).
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Using (2.5), which is part of the fundamental multiplication formulae along with (3.15), the
proposition is extended to y ∈ W̃ (+). Combined with associativity it furthermore allows
one to extend (3.15), (2.5) to the multiplication of two arbitrary characters as in the first
equality in (2.6), and hence to confirm formula (2.7) for the fusion multiplicities. The proof
is a straightforward generalization of the second proof of lemma 4.5 in [6]. What, however,
remains to be proved in general is the non-negativity of the multiplicities Nz

x,y in (2.7); so far
we have checked it on numerous examples. Finally, note that as in the sl(2) and sl(3) cases
we can assign a finite dimension to any character, sending all z → 1 in (2.3).

4. Discussion

Extending the results of [6] we have found a consistent ŝl(4)k fusion ring generated by the
formal characters (3.14). To interpret it as the fusion ring of the related quasi-rational WZNW
field theory one has to show that the (shifted) generalized weight diagrams of the generating
characters in (3.15), (3.7) are consistent with the solution of the equations expressing the
decoupling of the corresponding Verma module singular vectors. As in [5, 7], we can use
the standard functional realization of the representations of sl(4), in which the generators are
represented by differential operators in six variables, see for example, [14]. The resulting
systems of partial differential equations are, however, rather involved and we have checked the
simplest of them, corresponding to the ‘fundamental’ representation labelled by w230 = γ t−�̄1

:
the 15 points of the generalized weight diagram in (3.7) are confirmed. We have also partially
checked the multiplication rule of the generator χw0 , choosing a particular target representation
for which the system of equations simplifies: once again the generalized weight diagram in (3.7)
consisting of four points of multiplicity 1 and one point of multiplicity 3 is confirmed.

In the rational case k + 4 = 4/p (p-odd) the roots of equation (3.13) determine Y0 (and
hence all five generators expressed by the polynomials Pk(Y0)) in terms of the integrable
representations fusion ring characters χ

(p)

λ (µ) at level p. In principle, this should allow the
‘quantization’ of the general characters in (3.14), as it has been achieved in the sl(3) case
in [6].

The method developed here is expected to apply algorithmically to any n starting with the
analogues of the set (3.4) and determining the coefficients cg,b in the analogue of (3.14) from
the ‘fundamental’ fusions generalizing (3.15). The sixth-order polynomial will be replaced by
a (n−1)!-order polynomial. The non-trivial problem that remains is to find a universal formula
for the weight multiplicities in (2.6), extending (2.10), which in particular, would allow one to
prove the non-negativity of the structure constants in (2.7).
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